top of page

PUBLICATIONS

In preparation

Kogo, N., Kokai, E., Szucs, P., Isomura, Y., Aihara, T. Interconnections of horizontal cells in CA1 stratum oriens. In preparation.

Kogo, N. Emergent frequency components by non-linear dynamics of pyramidal cells in visual cortex. In preparation.

Kogo, N., Machilsen, B., and Demeyer, M. Global co-circularity of edges in natural images: The role of object boundaries. In preparation

 

Kogo N., Spaas C., Wagemans J., Stuit S., van Ee R. Figure-ground organization interferes with the propagation of perceptual reversal in binocular rivalry. In preparation  

Kogo N., Lovik A., Froyen V., Wagemans J. Shape adaptation reveals a crucial difference between modal and amodal completion. In preparation.

​

Published

1.    Hommersom, M. P. et al. CACNA1A haploinsufficiency leads to reduced synaptic function and increased intrinsic excitability. 2024.03.18.585506 Preprint at https://doi.org/10.1101/2024.03.18.585506 (2024).

2.    van Hugte, E. J. H. et al. SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain awad245 (2023) doi:10.1093/brain/awad245.

3.    Duymaz, Ä°., Kogo, N. & Alp, N. Non-evoked frequencies: Retinotopic position modulation induces SSVEP signals without intrinsic neural signal processing. 2023.10.17.562345 Preprint at https://doi.org/10.1101/2023.10.17.562345 (2023).

4.    Wang, S. et al. Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through the cAMP/PKA pathway. Cell Reports 39, (2022).

5.    Wang, S. et al. Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through cAMP/PKA pathway. bioRxiv 2021.05.25.445613 (2021) doi:10.1101/2021.05.25.445613.

6.    Kogo, N. et al. Dynamics of a Mutual Inhibition Circuit between Pyramidal Neurons Compared to Human Perceptual Competition. J. Neurosci. 41, 1251–1264 (2021).

7.    Kogo, N. & Froyen, V. Emergence of border-ownership by large-scale consistency and long-range interactions: Neuro-computational model to reflect global configurations. bioRxiv 2021.06.17.448869 (2021) doi:10.1101/2021.06.17.448869.

8.    Kogo, N. & Froyen, V. Emergence of border-ownership by large-scale consistency and long-range interactions: Neuro-computational model to reflect global configurations. Psychol Rev 128, 597–622 (2021).

9.    Kogo, N. et al. Dynamics of mutual inhibition between two visual cortical neurons compared to human perceptual competition. bioRxiv 2020.05.26.113324 (2020) doi:10.1101/2020.05.26.113324.

10.  Kogo, N. et al. Non-linear neural dynamics of mutual inhibition circuit in a real-life/computer model hybrid system. in (2019).

11.  Vergeer, M. et al. EEG frequency tagging reveals higher order intermodulation components as neural markers of learned holistic shape representations. Vision Res. (2018) doi:10.1016/j.visres.2018.01.007.

12.  Alp, N., Kohler, P. J., Kogo, N., Wagemans, J. & Norcia, A. M. Measuring Integration Processes in Visual Symmetry with Frequency-Tagged EEG. Sci Rep 8, 6969 (2018).

13.  Alp, N., Nikolaev, A. R., Wagemans, J. & Kogo, N. EEG frequency tagging dissociates between neural processing of motion synchrony and human quality of multiple point-light dancers. Scientific Reports 7, 44012 (2017).

14.  Alp, N., Kogo, N., Van Belle, G., Wagemans, J. & Rossion, B. Frequency tagging yields an objective neural signature of Gestalt formation. Brain and Cognition 104, 15–24 (2016).

15.  Machilsen, B., Demeyer, M. & Kogo, N. Global pair-wise statistics of edge luminance polarities reflect object boundaries in natural images. J Vis 15, 331 (2015).

16.  Kogo, N. & Trengove, C. Is predictive coding theory articulated enough to be testable? Front. Comput. Neurosci 111 (2015) doi:10.3389/fncom.2015.00111.

17.  Kogo, N., Hermans, L., Stuer, D., van Ee, R. & Wagemans, J. Temporal dynamics of different cases of bi-stable figure–ground perception. Vision Research 106, 7–19 (2015).

18.  Kogo, N. & van Ee, R. Neural mechanisms of figure-ground organization: Border-ownership, competition and perceptual switching. in Oxford Handbook of Perceptual Organization 342–362 (Oxford University Press, Oxford, 2015).

19.  Wagemans, J. & Kogo, N. Perceptual Multistability in Figure–Ground Organization. in The Oxford Handbook of Computational Perceptual Organization (eds. Gepshtein, S., Maloney, L. & Singh, M.) 0 (Oxford University Press, 2014). doi:10.1093/oxfordhb/9780199829347.013.4.

20.  Kogo, N., Drożdżewska, A., Zaenen, P., Alp, N. & Wagemans, J. Depth perception of illusory surfaces. Vision Res. 96, 53–64 (2014).

21.  Kogo, N., Demeyer, M. & Machilsen, B. Gestalts in scenes: Global consistency of luminance polarity at oriented edges in naturalimages. in (SAGE Journals, Belgrade, Serbia, 2014).

22.  Kogo, N. Dynamic neural mechanisms suggested by the different kinds of perceptual organization inmodal and amodal completion. in (Belgrade, Serbia, 2014).

23.  Wagemans, J. & Kogo, N. On perceptual multi-stability in figure-ground organization. in Handbook of Computational  Perceptual Organization (Oxford University  Press, New York, 2013).

24.  Kogo, N. & Wagemans, J. The emergent property of border-ownership and the perception of illusory surfaces in a dynamic hierarchical system. Cognitive Neuroscience 4, 54–61 (2013).

25.  Kogo, N. & Wagemans, J. The “side” matters: How configurality is reflected in completion. Cognitive Neuroscience 4, 31–45 (2013).

26.  Kogo, N. & Wagemans, J. What is required for a signal to be qualified as a ‘grouping’ tag? Br J Psychol 102, 676–681; author reply 682-683 (2011).

27.  Kogo, N., Galli, A. & Wagemans, J. Switching dynamics of border ownership: A stochastic model for bi-stable perception. Vision Research 51, 2085–2098 (2011).

28.  Kogo, N., Gool, L. V. & Wagemans, J. Linking depth to lightness and anchoring within the differentiation-integration formalism. Vision Res 50, 1486–1500 (2010).

29.  Kogo, N., Strecha, C., Van Gool, L. & Wagemans, J. Surface construction by a 2-D differentiation-integration process: A neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychological Review. 117, 406–439 (2010).

30.  Dry, M. J., Kogo, N., Putzeys, T. & Wagemans, J. Image descriptions in early and mid-level vision: what kind of model is this and what kind of models do we really need? Br J Psychol 101, 27–32; author reply 41-46 (2010).

31.  Koning, A., Kogo, N. & Wagemans, J. The role of objectness in the detection of visual regularities. Perception 35 (Supplement), 40b (2006).

32.  Kogo, N., van Belle, G., van Linden, R., van Gool, L. & Wagemans, J. Measuring the Kanizsa illusion: Revisiting brightness-nulling, depth-nulling, and contour-positioning studies. Perception 34 (Supplement), 44a (2005).

33.  Ariel, M. & Kogo, N. Shunting Inhibition in Accessory Optic System Neurons. Journal of Neurophysiology 93, 1959–1969 (2005).

34.  Kogo, N. et al. Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. Eur. J. Neurosci. 19, 2727–2740 (2004).

35.  Martin, J., Kogo, N., Fan, T. X. & Ariel, M. Morphology of the turtle accessory optic system. Vis Neurosci 20, 639–649 (2003).

36.  Kogo, N., Fransens, R., van Belle, G., Wagemans, J. & van Gool, L. End-stopped cue detection for subjective surface reconstruction. Perception 32 (Supplement), 127c (2003).

37.  Kogo, N., Fransens, R., van Belle, G., Wagemans, J. & van Gool, L. End-stopped cue detection for subjective surface reconstruction. in 26th European Conference on Visual Perception (2003).

38.  Kogo, N. et al. Reconstruction of Subjective Surfaces from Occlusion Cues. in Biologically Motivated Computer Vision (eds. Bülthoff, H. H., Wallraven, C., Lee, S.-W. & Poggio, T. A.) 311–321 (Springer, Berlin, Heidelberg, 2002). doi:10.1007/3-540-36181-2_31.

39.  Kogo, N., Fan, T. X. & Ariel, M. Synaptic pharmacology in the turtle accessory optic system. Exp Brain Res 147, 464–472 (2002).

40.  Kogo, N., Strecha, C., Caenen, G., Wagemans, J. & Van Gool, L. Reconstruction of subjective surfaces from occlusion cues. in Lecture Notes in Computer Science: BMCV 2002 Proceedings (eds. Bülthoff, H. H., Lee, S.-W., Poggio, T. A. & Wallraven, C.) 311–321 (Springer Verlag, Berlin, Germany, 2002).

41.  Ariel, M. & Kogo, N. Direction tuning of inhibitory inputs to the turtle accessory optic system. Journal of Neurophysiology 86, 2919–2930 (2001).

42.  Kogo, N. & Ariel, M. Response attenuation during coincident afferent excitatory inputs. J Neurophysiol 81, 2945–2955 (1999).

43.  Martin, J., Kogo, N. & Ariel, M. Morphology of basal optic tract terminals in the turtle, Pseudemys scripta elegans. Journal of Comparative Neurology 393, 267–283 (1998).

44.  Kogo, N., Rubio, D. M. & Ariel, M. Direction Tuning of Individual Retinal Inputs to the Turtle Accessory Optic System. J Neurosci 18, 2673–2684 (1998).

45.  Torgerson, C. S., Gdovin, M. J., Kogo, N. & Remmers, J. E. Depth profiles of pH and PO2 in the in vitro brainstem preparation of the tadpole Rana catesbeiana. Respir Physiol 108, 205–213 (1997).

46.  Kogo, N., Perry, S. F. & Remmers, J. E. Laryngeal motor control in frogs: role of vagal and laryngeal feedback. J Neurobiol 33, 213–222 (1997).

47.  Kogo, N. & Ariel, M. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. J Neurophysiol 78, 614–627 (1997).

48.  Perry, S. F. et al. The frog brainstem preparation as a model for studying the central control of breathing in tetrapods. Braz J Med Biol Res 28, 1339–1346 (1995).

49.  McLean, H. A., Kimura, N., Kogo, N., Perry, S. F. & Remmers, J. E. Fictive respiratory rhythm in the isolated brainstem of frogs. J Comp Physiol A 176, 703–713 (1995).

50.  Kogo, N. & Remmers, J. E. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. II. J Neurobiol 25, 1080–1094 (1994).

51.  Kogo, N., Perry, S. F. & Remmers, J. E. Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I. J Neurobiol 25, 1067–1079 (1994).

52.  Kogo, N. & Arita, H. In vivo study on medullary H(+)-sensitive neurons. J Appl Physiol (1985) 69, 1408–1412 (1990).

53.  Arita, H., Ichikawa, K., Kuwana, S. & Kogo, N. Possible locations of pH-dependent central chemoreceptors: intramedullary regions with acidic shift of extracellular fluid pH during hypercapnia. Brain Res 485, 285–293 (1989).

54.  Arita, H., Kogo, N. & Ichikawa, K. Rapid and transient excitation of respiration mediated by central chemoreceptor. J Appl Physiol (1985) 64, 1369–1375 (1988).

55.  Arita, H., Kogo, N. & Ichikawa, K. Locations of medullary neurons with non-phasic discharges excited by stimulation of central and/or peripheral chemoreceptors and by activation of nociceptors in cat. Brain Res 442, 1–10 (1988).

56.  Arita, H., Kogo, N. & Koshiya, N. Morphological and physiological properties of caudal medullary expiratory neurons of the cat. Brain Res 401, 258–266 (1987).

bottom of page